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CONS P EC TU S

N MR spectroscopy is one of the most powerful and versatile analytic tools
available to chemists. The discrete Fourier transform (DFT) played a

seminal role in the development of modern NMR, including the multidimensional
methods that are essential for characterizing complex biomolecules. However, it
suffers from well-known limitations: chiefly the difficulty in obtaining high-
resolution spectral estimates from short data records. Because the time required
to perform an experiment is proportional to the number of data samples, this
problem imposes a sampling burden for multidimensional NMR experiments. At
high magnetic field, where spectral dispersion is greatest, the problem becomes
particularly acute. Consequently multidimensional NMR experiments that rely on
the DFT must either sacrifice resolution in order to be completed in reasonable time or use inordinate amounts of time to achieve
the potential resolution afforded by high-field magnets.

Maximum entropy (MaxEnt) reconstruction is a non-Fourier method of spectrum analysis that can provide high-resolution
spectral estimates from short data records. It can also be used with nonuniformly sampled data sets. Since resolution is
substantially determined by the largest evolution time sampled, nonuniform sampling enables high resolution while avoiding the
need to uniformly sample at large numbers of evolution times. The Nyquist sampling theorem does not apply to nonuniformly
sampled data, and artifacts that occur with the use of nonuniform sampling can be viewed as frequency-aliased signals. Strategies
for suppressing nonuniform sampling artifacts include the careful design of the sampling scheme and special methods for
computing the spectrum. Researchers now routinely report that they can complete an N-dimensional NMR experiment 3N�1 times
faster (a 3D experiment in one ninth of the time). As a result, high-resolution three- and four-dimensional experiments that were
prohibitively time consuming are now practical. Conversely, tailored sampling in the indirect dimensions has led to improved
sensitivity.

Further advances in nonuniform sampling strategies could enable further reductions in sampling requirements for high
resolution NMR spectra, and the combination of these strategies with robust non-Fourier methods of spectrum analysis (such as
MaxEnt) represent a profound change in the way researchers conduct multidimensional experiments. The potential benefits will
enable more advanced applications of multidimensional NMR spectroscopy to study biological macromolecules, metabolomics,
natural products, dynamic systems, and other areas where resolution, sensitivity, or experiment time are limiting. Just as the
development of multidimensional NMR methods presaged multidimensional methods in other areas of spectroscopy, we
anticipate that nonuniform sampling approaches will find applications in other forms of spectroscopy.

Introduction
NMR spectroscopy can probe all states of matter and

quantify the composition of mixtures, structures of mole-

cules, dynamics of rate processes, and thermodynamics

of association. This versatility comes at a price; useful

sensitivity and high resolution require expensive magnets

and lengthy experiments. The introduction of Fourier trans-

form (FT) NMR enabled dramatic improvements in sensitiv-

ity and resolution.1 In FT-NMR, the response of spins to a

strong RF pulse is recorded, and the discrete FT (DFT) is used
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to compute the spectrum. In 2D NMR, for example, a delay

between two RF pulses, representing an “indirect” time

dimension, is parametrically sampled by repeating the ex-

periment using different values for the time delay. Succes-

sive Fourier transformation along the rows and the columns

of the resulting data matrix yields a two-dimensional spec-

trum. FT-NMR readily generalizes to arbitrary numbers of

dimensions,2 enabling the resolution of individual nuclear

resonances in complex systems.

The time required for a multidimensional NMR experi-

ment is directly proportional to the number of samples in the

indirect dimensions. Together, the requirements of uniform

sampling (required by the DFT) with sufficiently small incre-

ments of the delay time to span the width of the spectrum

(the Nyquist condition3) and long evolution times (for high

resolution) mean that high-resolution spectra require

lengthy experiments. Conversely, shorter experiments result

in lower resolution spectra. Conventional uniform sampling

in a high-resolution 3D experiment can require over a week

of measuring time. While 3D experiments have become

routine, resolution along the indirect dimensions is usually

substantially less than the acquisition direct dimension.

Four-dimensional experiments are far from routine because

of the time required to collect data sufficient for even

moderate resolution.

The subject of this Account is the use of nonuniform

sampling (NUS) methods in multidimensional NMR. NUS

permits high-resolution spectra to be obtained from short

data records, drastically reducing experiment times. NUS can

also be tailored to increase sensitivity. We focus on max-

imum entropy (MaxEnt) reconstruction, one of a number of

non-Fourier methods of spectrum analysis suitable for NUS

data, because it is particularly versatile and robust. Fast NMR

methods are a burgeoning area of development,4 and NUS

represents just one approach, but one of the most general.

The MaxEnt Method
MaxEnt reconstruction finds the spectrum that maximizes

the entropy while maintaining consistency with the mea-

sured data. The use of entropy as a measure of missing

information originated with Shannon and is the foundation

for information theory.5 Consistency of the computed spec-

trum fwith the measured data d is defined by the condition

C (f , d) ¼ C0 (1)

where C(f, d) is the unweighted χ2 statistic,

C (f , d) ¼ ∑
M � 1

i¼0

jmi � dij2 ¼ ∑
M � 1

i¼0

jiDFT(f )i � dij2 (2)

and C0 is an estimate of the noise level; iDFT is the inverse

DFT, and m is a “mock data” vector given by iDFT(f). The

constrained optimization problem is converted to an

unconstrained optimization through introduction of a

new objective function
Q(f , d) ¼ S(f ) � λC (f , d) (3)

where S(f) is the entropy. The unconstrained problem is

to find the f that minimizesQ(f, d), where the value of the

Lagrange multiplier λ is adjusted to obtain C = C0. C(f,d)

and S(f), and thus Q(f,d), readily generalize to multiple

dimensions. The seminal development of the “Cam-

bridge” algorithm,6 which is both robust and highly

efficient, launched the modern application of the max-

imum entropy principle in NMR. Extensions to the Cam-

bridge algorithm have provided additional performance

gains and adapted it to the requirements of phase-

sensitive NMR data.3

A schematic diagram for MaxEnt reconstruction is shown

in Figure 1. Details of the algorithm have been given

previously;3 however there are a number of features that

are important for applications to NUS. At each iteration,m is

computed from the current value of f. The computation of

C(f,d) can be limited to arbitrary subsets ofm; this is the basis

for the application to nonuniform sampling methods. The

value of λ is normally chosen so that C(f, d) converges to a

value (C0) that is comparable to the noise level in the data.

For multidimensional spectra that are reconstructed by

computing subspectra, for example, obtaining a 2D spec-

trum from a series of 1D spectra, using a fixed C0 value can

result in variations in λ that produce slight variations in the

nonlinearity of the reconstruction. An alternative, called

the fixed-λ algorithm,7 instead employs a fixed value of λ

for all subspectra, with λ chosen so that the average value

of C(f, d) over all subspectra is comparable to the noise.

Another alternative is to constrain the reconstruction to

match the empirical data very closely, that is, small C0 (or

large λ). In this approach, MaxEnt reconstruction becomes

nearly linear.8 While the formal derivation of the MaxEnt

algorithm specifies criteria for determining the value of C0
and another parameter that appears in the complex en-

tropy functional, applying those criteria in practice can be

challenging. Fortunately the results of MaxEnt reconstruc-

tion are not terribly dependent on the precise values of the

parameters over a wide range. A heuristic algorithm has

been shown to automatically find useful values for the

adjustable parameters.9



710 ’ ACCOUNTS OF CHEMICAL RESEARCH ’ 708–717 ’ 2014 ’ Vol. 47, No. 2

Nonuniform Sampling and Maximum Entropy Reconstruction Hoch et al.

While numerical solution is required in the general case,

there is a special case where MaxEnt reconstruction has an

analytical solution that gives insights into how MaxEnt

reconstruction works. When N (the number of points in the

reconstructed spectrum) is equal toM (the number of experi-

mental data points), Parseval's theorem3 permits the con-

straint statistic to be computed in the frequency domain. The

MaxEnt solution10 corresponds to a nonlinear transforma-

tion, applied point-by-point to the DFT of the time domain

data. Figure 2 illustrates the transformation δλ
�1(x) for var-

ious values of λ (panel A). The transformation depends on

the value of λ and has the effect of scaling every point in the

spectrum down, but points closer to the baseline are scaled

downmore than points far above the baseline (panel B). This

explains why noise near the baseline is suppressed more

effectively than noise superimposed on top of broad fea-

tures. This result implies an important distinction between

signal-to-noise ratio (SNR) and sensitivity. Applying the same

transformation to both the signal and the noise cannot

improve sensitivity, since peaks that are comparable in

height to thenoise levelwill be reduced by the sameamount

as the noise. The SNR may increase, but small peaks will be

FIGURE 1. Schematic diagram for MaxEnt. MaxEnt reconstruction begins with empirical data and a preliminary trial spectrum f (typically a blank
spectrum). Spectrum f is inverted (DFT�1) to create “mock” data (m) that is compared with the empirical data (d). An update to the trial spectrum is
computed by searching along the gradients of the entropy and the constraint (the agreement between the empirical and mock data). The algorithm
converges to the uniqueMaxEnt solution when the gradient of the objective functionQ = S� λC is zero and the gradients of S and C are antiparallel.

FIGURE 2. Nonlinear transformation for analytic MaxEnt. In the special case that MaxEnt is used to compute the n-element spectrum from an
n-element FID, the MaxEnt spectrum is equivalent to applying a monotonic nonlinear transformation to the DFT of the FID. The nonlinear
transformation (A) depends on the value of λ; in the limit of large λ (the constraint weighted more heavily than the entropy), the transformation
becomes nearly linear. For small λ, the transformation scales down small amplitude signals more than large amplitude signals (B).
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just as difficult to distinguish as before. In this special case,

gains in SNR in the MaxEnt reconstruction are purely cos-

metic. In themore general case, theremay be real sensitivity

gains.11,12 However, a prudent investigator will always

question whether gains in SNR really correspond to gains

in sensitivity.10

The nonlinearity of MaxEnt has important implications

when quantification of peak intensities or volumes is re-

quired, such as nuclear Overhauser effect measurements.

One approach is to tightly constrain the reconstruction to

match the data, which forces the reconstruction to be nearly

linear (although at the expense of noise suppression).8,13

Another is to inject synthetic signals into the time domain

data prior to reconstruction. A calibration curve can then be

constructed by comparing measured intensities or volumes

to the known amplitudes of the injected signals.14

MaxEnt is just one of a host of methods that have been

developed as alternatives to the DFT for reconstructing

spectra from NUS data. Some methods place restrictions

on the way the data are sampled, for example along radial

vectors in time. Others support arbitrary sampling schemes.

Among the methods suitable for NUS data, MaxEnt is

arguably the best characterized and most versatile.

Strengths and weaknesses of the various methods have

been compared recently.4

Sampling Fundamentals
The Nyquist sampling theorem states that to unambigu-

ously determine frequencies, the sampling interval,Δt, must

be at least as short as the reciprocal of the spectral width, SW

spanned by frequency components in the signal. Frequen-

cies higher than 1/Δt are aliased or mirrored about the

spectral limits. The interval between frequency elements

(the digital resolution) of the DFT is 1/(NΔt), where N is the

number of samples collected;NΔt is themaximumevolution

time. The number of samples required to maintain a given

maximum evolution time increases with magnetic field

strength, because increasing field increases SW.

NUS schemes that sample a subset of the evolution times

normally sampled using uniform sampling are called on-

grid. In schemes such as radial, spiral, or concentric ring, the

samples do not fall on this Cartesian grid.15 Exponentially

biased random (on-grid) sampling was the first general NUS

approach applied to multidimensional NMR.16 By analogy

with matched filter apodization,17 biasing the sampling

scheme toward shorter evolution times, using an exponen-

tial weighting tomatch the decay rate of the signal envelope,

improves sensitivity. We refer to this as envelope-matched

sampling (EMS). Generalizations to sine-modulated signals,

where the signal is small at the beginning, and constant-time

experiments, where the signal envelope does not decay,

utilize the same rationale.18,19 Distributions other than ran-

dom have been employed; Poisson gap sampling20 avoids

long gaps between sampleswhile ensuring that the samples

are approximately randomly distributed.

It bears emphasizing that the Nyquist condition does not

apply to NUS: NUS invariably introduces sampling artifacts

that are a form of aliasing.21 To a good approximation, the

positions and amplitudes of the sampling artifacts relative to

true signals can be derived a priori from the sampling

scheme. The point-spread function (PSF) is the spectrum of

a real-valued sampling function K consisting of the value 1

for samples included in the NUS scheme and the value zero

for samples not included in the scheme. For on-grid sam-

pling, the PSF can be computed using the DFT. K has the

property that when it multiplies a uniformly sampled data

vector, element-wise, it results in a data vector in which the

values not sampled in the NUS scheme have the value zero.

The DFT of this zero-augmented NUS data (referred to as

nonuniformDFT, nuDFT22) is equal to the convolution of the

DFT spectrum of the uniformly sampled data with the PSF.

Thus, estimating the spectrum of an NUS data set is equiva-

lent to deconvolving the PSF from the DFT spectrum of the

zero-augmented data. While nuDFT provides useful insights

into the nature of NUS artifacts, it is not a DFT of NUS data,

nor is it a very good estimator of the spectrum of NUS data.

The PSF typically consists of amain central component at

zero frequency surrounded by smaller nonzero frequency

components. Because the PSF enters into the DFT of the

zero-augmented data through convolution, each nonzero

frequency component of the PSF gives rise to a sampling

artifact for each signal component, with positions relative to

the signal components that are the same as the relationship

of the satellite peaks to the central component in the PSF.

The amplitudes of the sampling artifacts are proportional to

the amplitude of the signal component and the relative

height of the satellite peaks in the PSF. Thus, the largest

sampling artifacts arise from the largest-amplitude compo-

nents of the signal spectrum. The useful dynamic range

(ratio between the magnitude of the largest and smallest

detectable signal components) of the DFT spectrum of the

zero-augmented data can be directly estimated from the PSF

as the ratio between the amplitudes of the zero-frequency

component and largest nonzero frequency component; this

ratio is the peak-to-sidelobe ratio (PSR). The ability of a

method of spectrum analysis to suppress sampling artifacts
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is ultimately limited by both the noise and the dynamic

range of the signal.

In addition to the PSR, another useful metric for sampling

schemes is the sensitivity relative to uniform sampling. The

relative sensitivity depends on the sampling scheme and

the nature of the signals, principally the decay rate (or R2
* ) of

the signal envelope; in contrast the PSR depends only on the

sampling scheme. The relative sensitivity, r(K), of a sampling

scheme with sampling function K for a hypothetical signal

can be estimated from the signal amplitude captured by a

NUS scheme divided by that for uniform sampling having

the same maximum evolution times, tmax. For an exponen-

tially decaying signal, the relative sensitivity of a scheme K

spanning a two-dimensional grid with size n1 by n2 is

approximately given by23

r (K) ¼
∑
n1

i¼1
∑
n2

j¼1

Kijpij

∑
n1

i¼1
∑
n2

j¼1

pij

(4)

where the elements of p are given by

pij ¼ exp � (i � 1)R2(1)
SW(1)

 !
� ( j � 1)R2(2)

SW(2)

 !( )
(5)

R2(1) and R2(2) are the signal envelope decay rates, and

SW(1) and SW(2) are the spectral widths in the two

dimensions. A more accurate estimate would include

the amount of noise captured by the NUS scheme com-

pared with uniform sampling. Recently systematic efforts

to improve sensitivity using NUS have been reported.8,24

Themagnitudes of artifacts in NUS spectra depend on the

distribution of sampled evolution times and the sampling

coverage γ(K) = k/N, with k equal to the number of nonzero

entries inK andN the total number of elements inK, which is

the fraction of the evolution times from a uniform grid that

are sampled byK. For the example above, γ(K) = k/(n1� n2).

In general, the PSR increases with increasing γ, with only the

zero-frequency element of the PSF having a nonzero value

for γ = 1. Because large values of the nonzero frequency

components result from correlations among the sampled

evolution times,K composed of randomevolution timeswill

have the smallest sampling artifacts and highest PSR for a

given coverage. For decaying sinusoids, a random sampling

scheme will not have the highest sensitivity. A compromise

between sensitivity and small artifacts leads to biased ran-

dom sampling distributions, such as EMS.17 PSFs, together

with PSRs and relative sensitivity, are shown in Figure 3

for some representative sampling schemes, for sampling

coverages of 0.3, 0.1, and 0.05. The importance of random-

ness in sampling schemes for suppressing sampling artifacts

has been explored in depth.21,25

The resolution of any sampling scheme along a given

dimension, whether uniform or nonuniform, is largely de-

termined by tmax. Using the DFT, resolving spectral features

separated by the natural line width requires sampling at

evolution times of πT2 or longer, but sampling beyond

1.26T2 results in diminishing returns on sensitivity.26

(Without apodization, SNR reaches it maximum at 1.26T2.

Using matched filter apodization, SNR does not reach a

maximum but reaches 96% of the limiting value at

1.26T2.) With MaxEnt, sampling to 1.26T2 usually resolves

spectral components separated by the natural line width

and thus represents a reasonable compromise between

sensitivity and resolution for decaying signals. For experi-

ments in which the evolution period is constant time, the

signal decay is determined mainly by field inhomogeneity

(RF andB0), and sopractical limits on tmax are imposed by the

inhomogeneity or length of the constant time period, rather

than T2.

The degree towhich reducing sampling coverage viaNUS

can reduce experiment time, compared with uniform sam-

pling, depends on a number of factors in addition to the

randomness of the sampling scheme. Dynamic range of the

signals and their amplitude relative to noise are key deter-

minants. Because sampling artifacts enter through convolu-

tion, high dynamic range signals present challenges. Instead

of being additive, the amplitudes of the largest sampling

artifacts are determined by the amplitude of the strongest

signal component. When the dynamic range is large, these

artifacts may exceed the amplitude of weak signal compo-

nents. Thus, more aggressive reductions in sampling cover-

age are feasible for high sensitivity experiments that have

low dynamic range and are more challenging for experi-

ments with low sensitivity or high dynamic range. Dimen-

sionality and sparsity (the fraction of values with amplitudes

close to zero) of the spectrum have also been shown to play

a role.27,28 Increasing dimensionality helps in two ways, by

decreasing the coherence of sampling and by increasing the

sparsity of the spectrum. Sparsity helps because non-Fourier

methods of spectrum analysis such as MaxEnt and l1-norm

reconstruction work best for recovering sparse spectra.28 As

we show below, sampling coverage can conservatively be

around 1/3 for each NUS dimension (e.g., roughly an order

ofmagnitude reduction relative to uniform sampling for two

indirect dimensions), even for challenging signals with high
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dynamic range, while more aggressive reductions have

been used successfully for low dynamic range signals.

Optimal Sampling. As noted above in the discussion of

sensitivity, optimizing sampling schemes can be challen-

ging. Additional optimization can be realized by adjusting

the sampling grid. Nonuniform samplingonanoversampled

grid has been shown to shift artifacts to the edges of the

spectrum, outside the desired spectral window, although the

magnitude of sampling artifacts is not affected.29 Because a

sampling scheme that is optimal for one signal will not

necessarily be optimal for a signal containing different

frequency components, the design of efficient sampling

schemes involves trade-offs. Simply put, no single NUS

schemewill be best suited for all experiments. Despite these

challenges, prior knowledge about the signal can success-

fully inform the design of efficient sampling schemes. One

approach is to use “greedy” or adaptive sampling, in which a

sampling scheme is iteratively generated by asking what

sample (corresponding to a specific combination of indirect

evolution times), added to samples already measured, will

FIGURE 3. Examples of NUS schemes and PSFs. Examples of NUS sampling functions and PSFs in two nonuniformly sampled dimensions. Purely
random sampling (third row) yields the smallest sampling artifacts for a given level of coverage (the central zero-frequency component is extremely
narrow,making it hard to discern the red dot). Values for the relative sensitivity and PSR (both unitless) are displayed in the upper left and lower right,
respectively, for each PSF.
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most improve somemetric of performance. Suitable metrics

can be derived from the PSF (tominimize sampling artifacts),

the relative sensitivity, the ability to resolve expected reso-

nances based on statistical knowledge of chemical shift

distributions,30 or characteristics of the spectrum reconstruc-

tion prior to the next sample.31,32 A caveat is that while prior

knowledge can greatly improve sampling efficiency when it

is accurate, highly tailored sampling schemes can be less

robust thanmore general sampling schemeswhen there are

deviations from the underlying assumptions23 or high levels

of experiment noise.

NUS in Action
One compelling reason for adopting NUS in multidimen-

sional NMR experiments is dramatic savings in data collec-

tion time without loss of resolution. The potential savings

increase with magnetic field strength and with dimension-

ality. The time required for amultidimensional experiment is

directly proportional to the number of evolution times

sampled in the indirect dimensions,

texp ¼ (tacq þ trc)ntk2
d � 1 (6)

where tacq is the time required to sample one FID, trc is the

recycle time between transients, nt is the number of FIDs

coaveraged, k is the number of samples in the indirect

dimensions (for uniform sampling k =
Q

j=1
d�1nj with nj the

number of samples in dimension j and the product being

over the d � 1 indirect dimensions of a d-dimensional

experiment), and the factor of 2 per indirect dimension

reflects quadrature detection. For a fairly typical uni-

formly sampled 3D experiment averaging two FIDs with

64 evolution times sampled in each of two indirect time

dimensions, a tacq of 0.6 s and trc of 1.2 s, texp is 16.4 h.

Contrast this time to an experiment in which the max-

imum evolution time in the indirect dimensions corre-

spond to the Rovnyak limit26 of 1.26T2 for optimizing

sensitivity or πT2 for resolving components separated by

the natural line width. Typical 13C and 15N linewidths for

a 20 kDa protein at 14.1 T (600 MHz for 1H) are 17.5 and

5.8 Hz, respectively. The chemical shift dispersion for 13C

and 15N is 10500 and 2100 Hz, respectively. With sam-

pling intervals of 0.0952 and 0.476 ms required by the

Nyquist condition, 241 samples in the 13C dimension and

145 samples in the 15N dimension would be required to

sample uniformly to 1.26T2; 573 and 345 samples are

needed to reach πT2. The value of texp for 1.26T2 is 140 h,

and for πT2, it is 795 h. The total number of samples

required for uniform sampling to either limit greatly

exceeds the number typically acquired or the time de-

voted to data collection.33 Thismeans that higher dimen-

sionality experiments that employ uniform sampling are

FIGURE 4. Three-dimensional HNCO spectra for ubiquitin at 14.1 T (600MHz for 1H). 13C/1H planar cross sections at a 1H frequency of 8.14 ppm. The
one-dimensional cross sections through the plots are of the 13C row at theweakest peak (15N frequency of 120.5 ppm), scaled so that the highest and
lowest amplitudes are aligned. (A) Using a full data set, 6656 data samples, processed using LP extrapolation in each indirect dimension, shifted sine-
bell apodization, and DFT; this data set required 36 h of data collection. (B) Using 100 uniformly sampled data points (10 increments in each indirect
dimension); this data requires 25 min of data collection. The spectrum was computed by LP extrapolation in each indirect dimension, apodization
using a shifted sine-bell, and DFT. (C) Using NUS, with 100 random samples selected according to an exponentially weighted distribution, reconstructed
using MaxEnt; this data also requires 25min of data collection. (D) Same as panel C, except using nuDFT instead of MaxEnt. The weak peak near the
center of the 13C trace in A is the “tail” of a peak at a nearby 1H frequency; this disappears because of the narrower peaks in C.
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usually suboptimal both in sensitivity per unit time and in

resolution.
In their seminal application of NUS and MaxEnt, Barna

et al.34 demonstrated rather conservative coverage ranging

from 0.25 to 0.125. More substantial reductions in sampling

coverage have subsequently been reported for 3D and 4D

experiments, with coverages well below 0.01 common35

and reaching 0.0016.36 NUS is not the only means for

reducing the time required for multidimensional NMR ex-

periments; in the SOFASTapproach, the timebetween FIDs is

reduced.37 Because SOFAST (and related methods) and NUS

are complementary, they can be combined, achieving great-

er speedup than either approach alone.29,38

Rovnyak et al. exploited NUS to resolve separate reso-

nances reflectingmagnetically inequivalent 17Onuclei in the

unit cell of hydroxyapatite crystals.39 NUS has also been

FIGURE 5. Three-dimensional HNCO spectra for ubiquitin at 14.1 T (600MHz for 1H). Projections of the full spectrumonto the 13C/1H plane. The one-
dimensional cross sections through the plots are expansions depicted by the rectangular boxes, scaled to align themaxima andminima. (A) Using the
full 6656 sample data set, processed using LP extrapolation in the indirect dimensions, shifted sine-bell apodization, andDFT (36 h of data collection);
(B) using 400 uniformly sampled data points (20 increments in each indirect dimension, 25min of data collection); the spectrumwas computed by LP
extrapolation in each indirect dimension, apodization using a shifted sine-bell, and DFT; (C) using NUS, with 400 random samples selected according
to an exponentially weighted distribution, reconstructed using MaxEnt; this data also requires 25 min of data collection; (D) same as panel C, except
using nuDFT instead of MaxEnt.
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used to obtain high-resolution spectra for disordered pro-

teins, which exhibit narrow spectral dispersion and hence

crowded spectra.38,40,41 The higher resolution afforded by

NUS has also enabled novel assignment strategies for pro-

tein spectra that are not practical with uniform sam-

pling.35,42 For example, 4D HCC(CO)NH-TOCSY spectra ob-

tained using NUS for the three indirect dimensions can be

obtained in 1.5 days, a rather dramatic speedup, rendering

high-resolution 4D experiments practical. The resulting re-

solution in the indirect dimensions is sufficient to capture

unique carbon�proton connectivities, enabling a novel and

efficient scheme for assigning protein side-chain reso-

nances. Similar approaches have also been reported for

backbone resonance assignment employing 3D exper-

iments.42,43

Examples illustrating important characteristics of NUS are

shown in Figures 4 and 5. Figure 4 depicts 2D cross sections

through the HNCO spectrum of ubiquitin; 1D cross sections

at the frequency indicated by the dashed line are shown

above each contour plot. Panel A shows the spectrum

obtained using conventional uniform sampling and DFT

processing, requiring 34 h to complete the experiment.

Panel B shows the results using uniform sampling with a

truncated data set requiring 25 min to collect; the reduction

in resolution is severe. Panels C and D show the results from

an experiment also using 25 min of measuring time, but

usingNUS instead of uniform sampling. In Panel C,MaxEnt is

used to compute the spectrum; in panel D, nuDFT was

employed. Figure 5 depicts contour plots for 2D projections

of the HNCO spectrum for ubiquitin onto the 1H�13C plane.

Panel A shows the projection obtained using the uniformly

sampled data set of Figure4A. Panels B and C show the

projections obtained from the truncated uniform and NUS

data sets (corresponding to Figure 4, panels B and C,

respectively). Panel D shows the projection obtained with

nuDFT instead of MaxEnt (panel C); panel D dramatically

reveals the poverty of nuDFT, because the coherent sam-

pling artifacts are accumulated by the projection. The nearly

90-fold reduction in experiment time, with no loss of sensi-

tivity or resolution, makes a convincing case for NUS and

MaxEnt.

Concluding Remarks
The debate over optimal sampling schemes and the best

reconstruction method is far from settled. A comprehensive

critical comparison remains elusive, in part because metrics

of spectral quality (sensitivity, resolution) that are valid for

linear methods, such as DFT, are frequently not suitable for

non-Fourier methods. In addition to a lack of consensus on

appropriate metrics, critical comparison is made difficult by

the absence of a “shared task” comprised of a standard set of

data. Nevertheless, a number of basic tenets of NUS have

achieved broad consensus. It is abundantly clear that NUS

approaches are essential for fully realizing the potential

resolution afforded by modern high field magnets in the

indirect dimensions of multidimensional experiments. Also

widely appreciated is the importance of randomness in the

design of sampling schemes in order to minimize sampling

artifacts. Although the design of efficient sampling schemes

remains an active area of investigation, it is understood that

sampling more frequently when the signal envelope has

greater amplitude improves sensitivity. The flexibility of NUS

approaches for reducing measuring time, increasing resolu-

tion, or enhancing sensitivity, and in some cases twoormore

of these simultaneously, make NUS an indispensable tool

for enhancing the utility and power of multidimensional

NMR. These improvements will enable new and challenging

applications of multidimensional NMR to larger, more com-

plex, less abundant, and fleetingly stable systems.
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